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NUMERICAL SIMULATION OF VISCOUS FLOW
AROUND A SYSTEM OF BODIES ON THE BASIS
OF THE NAVIER–STOKES EQUATIONS IN STREAM
FUNCTION–VORTICITY VARIABLES

A. B. Mazo UDC 532.516

A method of numerical solution of the Navier–Stokes equations in stream function–vortex–pressure variables is
suggested to be used in simulating a nonstationary, nonsymmetric flow of a laminar incompressible viscous
stream around a pair of rotating cylinders in a channel. Results of calculations which illustrate application of
the method under different conditions of flow around bodies are presented.

Introduction. Separating flows near single blunt bodies and their systems continue to attract the attention of
researchers. On the one hand, this is explained by practical interests since this class of flows is associated with diverse
engineering problems — from calculation of tubular heat exchangers to designing bridges and offshore oil platforms.
On the other hand, theoretical interest in the very phenomenon of periodic flow stalling from the surface of a body
immersed in a flow to formation and development of complex vortical structures in the wake has not waned.

The simplest mathematical and numerical models of such flows are based on the Navier–Stokes two-dimen-
sional equations, which adequately describe the hydrodynamics of a laminar flow at low and moderate Reynolds num-
bers. The fullest coverage in the literature has been provided for experimental and numerical results of investigation
into an infinite separated flow of a viscous, incompressible fluid past a single fixed circular cylinder. However, re-
cently publications have appeared concerned with the study of flow past a system of cylindrical bodies at Reynolds
numbers lying in the range 40 < Re < 200. Thus, in the reviews of experimental works [1–3], characteristic features
of a flow past a pair of fixed circular cylinders located at different distances from one another and differently orien-
tated to the flow are presented. To carry out numerical simulation of this class of flows, different approaches have
been suggested: from the method of discrete vortices [4] to a hybrid method of boundary and finite elements [5, 6].
As a rule, the results of calculations agree satisfactorily with experimental data. At the same time, an analysis of the
literature shows that by no means have all the aspects of flow past a system of bodies been adequately studied, and
development of alternative methods to perform numerical simulation in the given region remains of current interest.

Below, a nonstationary, nonsymmetrical laminar flow of an incompressible viscous fluid past a pair of rotating
cylinders in a channel is considered. This statement generalizes the problem [7] of flow near a single cylinder with a
rotational degree of freedom in a channel without friction on its walls. A method to numerically solve the Navier–
Stokes equations in stream function–vortex–pressure variables that is based on the theoretical concepts presented in [8]
is suggested.

Statement of the Problem. The dimensionless Navier–Stokes equations in the stream function ψ–vorticity ω
variables have the form
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where u and v are the components of the velocity vector V, with the average value of the longitudinal velocity u
being equal to unity and the Reynolds number Re being based on the radius of one of the bodies immersed in a flow.
The field of pressure p can be calculated at any fixed moment of time t if the functions ψ and ω are known at this
time. The equation for the pressure is traditionally written in the form [9]
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however, in [10] an alternative formulation of the problem for the Bernoulli variable B was suggested; it can be rear-
ranged to the form [7]

− ∆B = grad ω grad ψ − ω2
 ,   p = B − V

2 ⁄ 2 . (4)

From the viewpoint of numerical solution, the advantage of Eq. (4) over Eq. (3) is that to calculate the right-hand side
of Eq. (4) it is sufficient to take the first derivatives of the grid solution of ψ and ω, whereas in Eq. (3) one has to
find the second-order derivatives of the approximate solution of Eq. (2).

As the calculation region D, one selects a plane channel which is bounded by horizontal walls y = %H,
inlet vertical section x = −L1, outlet section x = L2, and by inner boundaries γi, i = 1, 2, ..., N, which are the
surfaces of N cylindrical bodies of unit radius placed into the channel. It is assumed that all the boundaries are
impermeable and the channel walls are immovable, whereas the bodies can rotate; therefore the tangential velocities
vi at boundaries γi generally differ from zero. At the inlet to the channel, a stationary parabolic velocity profile is
assigned:

u0 = 1.5 (1 − z
2) ,   z = y ⁄ H

as well as the corresponding distributions of the stream function and vorticity; the pressure is assumed to be equal to
zero. The boundary conditions at the inlet to the channel have the form

x = − L1 :   ψ = ψ0 = 1.5H (1 + z) 
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We note that the average velocity of the incoming flow is equal to unity, whereas the fluid flow rate in the channel
is equal to Q = ψ(H) − ψ(−H) = 2H. In the outlet section of the channel, "mild" boundary conditions are set:
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In writing (6) for the Bernoulli variable, the assumption that L2 >> 1 is adopted, so that the flow near the outlet
boundary is close to a stationary one.

The problem of posing boundary conditions on surfaces immersed in a flow for Eqs. (1), (2), and (4) has
been investigated in detail in [8]. Each of these boundaries is a streamline, but only on the channel walls are the val-
ues of ψ(−H) = 0 and ψ(H) = Q known, whereas on the inner boundaries γi the values of the stream function are
determined with the aid of a system of auxiliary harmonic functions ηi from the formulas
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Here, 

γ

 is the length of the contour γ; ds is an element of the arc length; Γtop denotes the upper wall of the chan-

nel, and the direction of traverse along the boundaries during integration in (7) is selected so that the region could re-
main on the right. The auxiliary functions ηi(x, y) satisfy the boundary-value problems
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∆ηi = 0 ,   x, y 8 D ,   i = 1, 2, ..., N ;

x = − L1, L2 ;   x, y 8 γ2,...,N :   
∂ηi

∂n
 = 0 ;   y = % H :   ηi = 0 ;   x, y 8 γi :   

∂ηi

∂n
 = 1 .

(8)

Relations (7) are considered as the main boundary conditions for Eq. (2) on the inner boundaries γi, whereas
the Neumann conditions ∂ψ ⁄ ∂n = vi are used to determine the boundary values of vorticity. In [8], the following in-
tegral identity is used for this purpose:

 ∫ 
D

ωηdD = ∫ 
D

∇ψ⋅∇ηdD − ∑ 

i=1

N

∫ 
γi

viηds , (9)

in which η is an arbitrary trial function, whereas the stream function ψ on the right side is the solution of Eq. (2)
with boundary conditions (7). The trace of the solution of problem (9) on the inner boundaries γi as well as on the
channel walls is used as the Dirichlet boundary conditions for the problem of vorticity transfer (1). Finally, the bound-
ary conditions for the Bernoulli variable on surfaces immersed in a flow are obtained from Pearson’s relation [9], and,
after generalization to the case of movable boundaries, they take the form

x, y 2 γi :   
∂B

∂n
 = 

1
Re

 
∂ω
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 − viω . (10)

Condition (10) is valid also on the channel walls, if it is assumed that there vi = 0.
The system of relations (1), (2), (4)–(7), (9), and (10) represents a closed mathematical model of a viscous

laminar flow past a system of rotating cylinders in a channel.
Algorithm of Numerical Solution. The solution of the problem begins from construction of a grid of trian-

gular linear finite elements and renumbering its nodes with the aid of a minimum-degree algorithm to reduce the fill-
ing of the matrix when it is decomposed into triangular factors. Hereinafter, problems (8) are solved by a direct
method to determine auxiliary functions ηi. The result for the case N = 2 is shown in Fig. 1. The calculation of ηi is
followed by calculation of the first two integrals in formulas (7), and thereafter a change in the constants ψi is deter-
mined only by a change in ω in the last integral of (7).

At t = 0, the initial distribution of the vortex ω = ω0(x, y) is given (see Eq. (5)) and approximate values of
streamlines ψi

0 = ψ0(yi
c). Thereupon, in the time cycle tj = jτ, j = 1, 2, ..., the functions ψ and ω are calculated. The

iteration scheme of solving the problem on the time layer is as follows:
1. The integrals over the region D of the product ωγi are calculated and, using Eq. (7), new values of the

stream function at the boundaries γi are calculated.

Fig. 1. Auxiliary function η1 for the case of a flow around two cylinders.
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2. The found values of ψi are used as boundary conditions in solving problem (2) for the stream function ψ.
The grid scheme of finite elements is constructed on the basis of the integral identity

 ∫ 
D

∇ψ⋅∇ηdD = ∫ 
D

ωηdD . (11)

The transition from (11) to finite-dimensional schemes is accomplished following a standard procedure; the basic
boundary conditions are taken into account on the matrix level: in each line of the matrix of the system of equations
that corresponds to the grid node with the Dirichlet conditions, the number G >> 1 is placed on the principal diagonal
and the right side is multiplied by G.

3. The resulting distribution of the stream function is used to calculate the vortex at the boundary by solving
problem (9). The approximating equation has the form Mω = ΛΛψ + f, where M is the "sparse" symmetrical matrix
within conditionality of the order of unity; ΛΛ is the grid analog of the Laplace operator with the Neumann boundary
conditions; the vector f is produced by the last term on the right side of Eq. (9), and it differs from zero only on the
movable boundaries. The boundary values of the solution found are used as the Dirichlet conditions for the vortex.

4. Problem (1) is solved, and, after discretization in time, it has the form

ω − 
τ

Re
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where the last term on the right side is calculated from the values of the desired functions at the previous iteration.
The spatial discretization of the problem for ω, just as the remaining grid approximations, are constructed on the basis
of the integral identity

 ∫ 
D

ωηdD + 
τ

Re
 ∫ 
D

∇ω⋅∇ηdD = ∫ 
D

φηdD . (12)

The iterations are completed as soon as a further refinement of the constants ψi becomes unessential. Usually,
the convergence with an accuracy of the order of 10−4 is attained in 8–10 iterations on each time layer. However, spe-
cial numerical experiments have shown that during flow in a channel, fluctuations of the values of ψi caused by peri-
odic vortex shedding have an amplitude an order of magnitude smaller (of the order of 10–4) than in the problems of
external flow past a body [7]. Therefore, the problem is solved in two stages. In the first stage, calculations are per-
formed following the complete scheme described above, but for a short interval of time (usually no more than 100
steps). In this interval of time, the values of the constants ψi are being found. In the second stage, the stream func-
tions found on the boundaries are fixed, and further calculation is performed without internal iterations.

The solution of the systems of algebraic equations produced by integral identities (9), (11), and (12) is per-
formed by a direct method, with the Kholetskii factorization being made once, whereas in the internal iterative process
and in passing to a new time layer only the right sides of the equations are renewed. To preserve the vectors and ma-
trices, and also as for operations with these objects, the technique of the algebra of sparse matrices is used.

Having found the functions ψ and ω for a fixed t, it is possible to solve Eq. (4) and determine the Bernoulli
variable B(x, y) at this instant of time. In [11], the difficulties of solving the problem for pressure that were caused by
the necessity of differentiating an approximate solution when calculating the right side of the equation and by the large
length of the calculation region L = L1 + L2 >> 1 were noted. This can be illustrated by a simple example that pre-
serves the problem properties discussed. We will consider the equation b′′ = ϕ, x 8 (0, L) with boundary-value condi-
tions b(0) = 0 and b′(L) = 0, which are similar to conditions (5) and (6). At ϕ = const, the solution has the form b
= ϕL2ξ(ξ ⁄ 2 − 1), ξ = x/L. If the right side of the equation is prescribed with an error ϕ~ = ϕ + ε, then the maximum
error of the solution will evidently be equal to εL2/2. The numerical experiments for problem (4)–(6), (10) have con-
firmed that variations of the right side of the equation at ε D 10−3 and L D 100 lead to deviations of the calculated
pressure of the order of 10. To reduce the error, the accuracy of the scheme of finite elements is raised as described
in [11]. Based on the initial grid, a new grid of 10-nodal finite elements of third degree is constructed, and linear fill-
ing-in of the function ω is determined. Then, the equation ∆ψ = −ω is solved on the new grid, and equations of dif-
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ferentiation are carried out to calculate the right side of Eq. (4). The boundary-value problems for ψ and B are solved
by the method of conjugate gradients with a preconditioning operator constructed with the aid of a complete Kholetskii
expansion.

Results of Simulation. In this section, some of the results of numerical simulation of a viscous flow past a
pair of circular cylinders in a channel with boundaries y = %H, H = 10; x = −L1 = −30, and x = L2 = 80 are pre-
sented. The following cases were considered: cylinders located along the line of flow (in tandem), across the channel
axis (vertically), and at an angle of 45o to the axis (a diagonal scheme). In all calculations, Re = 150; the cylinders
are modeled as both being immovable (vi = 0) and with different directions of rotation (vi = %1).

Figure 2 depicts a symmetrical picture of flow downstream of a pair of cylinders located vertically. In the ab-
sence of rotation (upper figure), the bodies divide the incoming flow into the parts ψ1 = 7.1 and ψ2 = 12.9; when
they rotate inside (lower picture), the values of the streamlines on the surfaces in a flow change to ψ1 = 5.5 and ψ2
= 14.5. In both cases, nearly a symmetrical structure of flow with an alternating change in the velocity profile in the
transverse sections A and B is formed (Fig. 3).

On the whole, the rotation of the cylinders into the flow leads to the expected increase in the velocity in the
flow core and its retardation near the channel walls. It should be noted that in sections A, where the vorticity concen-
tration is observed, the redistribution of the flow from the axial line to the periphery occurs in the case of the immov-
able cylinders, whereas in the case of rotating bodies there is a relative flow acceleration in the flow core. This
corresponds entirely to different directions of the rotation of vortices in the given sections (see Fig. 2).

The symmetrical picture of flow around the cylinders is disturbed when the latter are located diagonally. Fig-
ure 4 presents the streamlines in the vicinity of a pair of circular cylinders rotating in the direction from the axial line
to the channel walls. Such a rotation leads to a substantial redistribution of flow rates between the surfaces of the bod-
ies immersed in the flow: ψ1 = 9.46 and ψ2 = 10.54. These values show that only about 5% of the fluid passes be-
tween the cylinders, whereas the main part of the flow moves around the periphery; actually, in the given case there
is an external flow past one movable "body" formed by the pair of cylinders with attached pulsed vortices. This is

Fig. 2. Influence of rotation on the flow around a pair of cylinders located ver-
tically in a channel at Re = 150; arrows on the lower picture show the directions
of rotation; A and B, section in which velocity profiles differ substantially.
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also confirmed by the fact that the von Ka′rma′n streets downstream of the cylinders rapidly lose their individuality,
and at a distance of x D 40 a common vortex wake is formed.

Next, we will consider the dynamics of flow around a tandem of immovable circular cylinders, with the dis-
tance between their centers equal to 6.667. From Fig. 5 it is seen that first independent paired vortices are formed
downstream of each of the bodies immersed in the flow (the upper photograph on the left). With time, the eddy zone
behind the first cylinder expands and practically "screens" the cylinder located downstream. The streamline emanating
from the point of separation of the boundary layer of the preceding cylinder is attached to the frontal surface of the
rear cylinder. Thus, a closed cavity with a circulating fluid is formed between the pair of the tandem. The pressure in
the bottom region of the first cylinder is lowered, and this leads to the appearance and development of a reverse jet
from the frontal point of the rear cylinder (the third and fourth photographs). Simultaneously, the instability and de-
struction of the symmetrical structure of the second vortex wake begin to manifest themselves, while the vertical cav-
ity between the bodies remains stable and symmetrical. This process ends with formation of a single pulsating vortex
wake downstream of the tandem. However, calculations show that the amplitude of the self-oscillations of the flow is
low enough to allow us to speak of a "separationless" flow around the tandem of cylinders with a vortical cavity be-

Fig. 3. Longitudinal velocity profiles in sections A and B (see Fig. 2) for an
immovable pair of cylinders (a) and a pair of cylinders rotating into the flow (b).

Fig. 4. Nonsymmetrical picture of streamlines in the case of diagonal location
of cylinders rotating in the directions toward the channel walls; velocity field
near the moving surface of a body.
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tween them. The role of this cavity in the formation of the flow structure seems to be analogous to the effect of eddy
cells on the aerodynamic profiles studied in [12].

The pressure field in the vicinity of the bodies immersed in a flow is shown in Fig. 6. Integration of p and
of the longitudinal component of the shear stress at the boundaries γ1 and γ2 yields the following values for the drag
coefficients: C1 = 1.49 and C2 = −0.067. This means that the rarefaction in the circulation cavity between the bodies
enhances the overall pressure on the first cylinder (we recall that for a single cylinder, Cd C 1.33 at Re = 150) and
simultaneously acts on the second cylinder in the direction opposite to the flow. Thus, if we rigidly connect both bod-
ies, the overall drag coefficient of the tandem will be lower than that for a single cylinder.

Conclusions. An economical method of numerical simulation of a viscous separation flow around a system of
bodies in a channel which is based on solving the Navier–Stokes equations in transformed variables has been devel-
oped. The calculation of the hydrodynamic fields was performed in three stages. First, with the aid of an iteration pro-
cedure the values of the stream function at the boundaries of the bodies are determined. In the second stage, an
evolution problem of transfer and diffusion of vorticity (1), (2) is solved. In the final stage, problem (4) is solved with
the aid of the found functions ψ and ω for fixed instants of time t for the Bernoulli variable, and the field of the
pressure p is recovered. The method can be easily generalized to the cases of curvilinear channel walls and flow of a
stream around an arbitrary number of bodies of arbitrary shape.

The flow around a pair of immovable and rotating circular channels in a channel has been calculated. Differ-
ent cases of mutual disposition of the cylinders and directions of their rotation were considered. New qualitative char-
acteristic features of flow and development of eddy structures in each case have been established.

The results of numerical simulation given in the article are mainly meant for illustrating the feasibilities of the
proposed method. For a deeper understanding of the processes studied, it is necessary to carry out a series of compu-
tational experiments and ascertain the influence of the channel width, speed of the rotation of the bodies, and their lo-
cation in the flow on the flow structure, drag coefficients, buoyancy, and the frequency of the shedding of vortices. A
separate publication is planned where these results will be presented and analyzed.

Fig. 5. Development of vortex structures in a stream flowing around a tandem
of circular cylinders at Re = 150.

Fig. 6. Pressure field in a stream flowing around a tandem of circular cylin-
ders at Re = 150.
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NOTATION

b, auxiliary variable; B, Bernoulli variable; C1 and C2, drag coefficients of a pair of cylinders; Cd, drag of a
single cylinder; D, calculation region; f, vector of forces; G, arbitrary large number; H, half-width of the channel; i,
ordinal number of the contour; j, number of the time layer of the computational scheme; L1, L2, and L, coordinates of
the vertical boundaries of the calculation region and its length; M, mass matrix; N, number of bodies immersed in a
flow; n, normal to the boundary; p, pressure; Q, flow rate; Re, Reynolds number; s, arc of the contour; t, tj (j = 1, 2,
...), time and time layer of the computational scheme; V and V, velocity vector and its modulus; u and v, components
of the velocity vector V; u0, velocity at the channel inlet; vi, speed of rotation of the ith cylinder; x, y, Cartesian co-
ordinates; yi

c, coordinate of the center of the ith cylinder; z, auxiliary variable; Γtop, top wall of the channel; 

γ

,

length of the contour γ; γi (i = 1, 2, ..., N), boundaries of the bodies in a flow; ε, ξ, and ϕ, auxiliary variables; η,
trial function; ηi (i = 1, 2, ..., N), auxiliary harmonic function; Λ, stiffness matrix; τ, step of the computational scheme
in time; ϕ~, approximate value of ϕ; φ, right side of the equation for ω on the time layer; ψ, stream function; ψi,
boundary value of ψ on the contour i; ψ0, stream function at the channel inlet; ψi

0, initial approximation for ψi; ω,
vorticity; ωi and ω0, boundary values of ω. Superscript: c, center. Subscript: top, top.
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